Feria Del Libro Digital

Gran exposición gratuita de libros en formatos PDF, EPUB y MOBI

Topología diferencial

Resumen del Libro

Libro Topología diferencial

A finales del siglo XX, año 1998, dos de los autores de este texto publicamos uno basado en la experiencia de impartir diversos cursos de Topología Diferencial en el Departamento de Geometría y Topología de la Facultad de Ciencias Matemáticas de la Universidad Complutense de Madrid. Se recogían en él las ideas centrales de transversalidad y aproximación en variedades con borde: los métodos que introdujo Thom a mediados del siglo XX, y que permiten hacer, en frase acuñada por Milnor «topología desde el punto de vista diferenciable». Efectivamente, producen de manera extremadamente elegante resultados muy importantes. Muchos colegas usaron aquel texto en sus cursos e hicieron comentarios y sugerencias, y luego, ya descatalogado, aún preguntaban por él. Este halago nos empujó a escribir otro nuevo ya en este siglo, año 2014. Inevitablemente, nuestro punto de vista sobre cómo se desarrolla un curso de iniciación de Topología Diferencial había variado con los años. Así, aunque fieles a la idea original, produjimos un texto distinto en aspectos relevantes. Aquí fue esencial la contribución del autor que no estuvo en aquella aventura inicial. Hubo después en 2020 una reedición sustancialmente revisada, y ahora el lector tiene en sus manos ésta con más mejoras. Todas las revisiones son el fruto de explicar el texto en el aula, en el Master de Matemáticas Avanzadas de la UCM. Los cambios introducidos han derivado en buena parte del entusiasmo de nuestros alumnos por aprender y les agradecemos haber elegido nuestras clases. Muchas personas nos han ayudado en estas reediciones, y no podemos nombrarlas a todas, pero como representación queremos citar a Jaime J. Sánchez Gabites, cuyas observaciones han sido verdaderamente iluminadoras. En fin, de nuevo agradecemos a Sanz y Torres que continuadamente apoya nuestro deseo de perfeccionar el libro. Este texto está pensado para un cuatrimestre a razón de cinco horas semanales, contando con el trabajo individual de cada estudiante. El objetivo es explicar qué es la transversalidad y cómo se utiliza junto con la aproximación para abordar problemas topológicos. Las treinta y cuatro secciones de sus cuatro capítulos se enumeran en la página IX y sus títulos dan razón precisa de las etapas del recorrido que proponemos. La salida es la definición de variedad con borde y la meta son seis teoremas fundamentales: el del punto fijo de Brouwer, el de invarianza del dominio, el de separación de Jordan-Brouwer, el de homotopía de Brouwer-Hopf, el de la esfera de Brouwer y el de Borsuk-Ulam. Señalemos que: (1) Consideramos siempre variedades sumergidas en un espacio afín, pero incluimos una prueba elemental a partir de las definiciones de que las variedades diferenciables abstractas son todas sumergidas. (2) Construimos de manera explícita directa los entornos tubulares de una variedad diferenciable en un espacio afín y las retracciones propias diferenciables asociadas. (3) Detallamos la construcción de collares de una variedad con borde, sin utilizar flujos, y de las correspondientes retracciones propias continuas (diferenciables no pueden ser). (4) Demostramos los resultados completos de aproximación y homotopía diferenciables para aplicaciones con valores en variedades con borde. En las fuentes que conocemos estos resultados de aproximación y homotopía se formulan sólo para aplicaciones con valores en variedades sin borde. El argumento habitual apela a las retracciones diferenciables, y por ello no vale para variedades con borde. Aquí utilizamos collares para complementar ese argumento y poder establecer los resultados sin restricciones de borde. Todo esto es ciertamente parte del folklore de los especialistas, pero es bueno escribir ese folklore alguna vez. En otro orden de cosas, hacemos una simplificación grande de la presentación limitándonos a variedades de clase infinito, que denominamos simplemente variedades diferenciables. El tratamiento ...

Ficha Técnica del Libro

Subtitulo : Un curso de iniciación (3ª Edición)

Número de páginas 186

Autor:

  • Enrique Outerelo Domínguez
  • Juan Ángel Rojo
  • Jesús María Ruiz Sancho

Categoría:

Formatos Disponibles:

PDF, EPUB, MOBI

¿Cómo descargar el libro?

Valoración

Popular

3.6

92 Valoraciones Totales


Otros libros relacionados de Matemáticas

Matemáticas I

Libro Matemáticas I

Este libro te ayudará a construir los mejores aprendizajes y herramientas para que los apliques dentro y fuera del aula, proporcionándote así una mejor calidad de vida y un excelente desarrollo personal y profesional.

El pensamiento lógico-matemático

Libro El pensamiento lógico-matemático

El pensamiento lógico-matemático reúne una serie de aspectos recurrentes que son identificables a lo largo de su historia. Desde los resultados incipientes de la aritmética pitagórica y de la geometría euclídea, hasta los desarrollos modernos de los correspondientes sistemas abstractos de la aritmética de Peano-Gödel y de la geometría de Hilbert, las ciencias deductivas exhiben una tradición de pensamiento sólidamente fundada en el valor epistémico de la prueba clásica. Esta progresión no ha estado exenta de crisis abruptas y convulsas derivadas de la tensión que origina el...

Observabilidad y controlabilidad en modelos de evolución

Libro Observabilidad y controlabilidad en modelos de evolución

El objetivo de esta memoria es la aplicación de la teoría de sistemas matemáticos para revelar importantes propiedades cualitativas de distintos modelos dinámicos de evolución. Se presentan resultados para la observabilidad y controlabilidad de modelos de interés desde el punto de vista biológico, de manera que introduciendo controles apropiados se puede conducir la población hacia estados deseados. Una dificultad básica en el estudio de los modelos considerados es la no linealidad de los mismos y una importante característica es que son dependientes de las frecuencias, lo que hace...

Conjunto plitogénico, una extensión de los conjuntos crisp, difusos, conjuntos difusos intuicionistas y neutrosóficos revisitado

Libro Conjunto plitogénico, una extensión de los conjuntos crisp, difusos, conjuntos difusos intuicionistas y neutrosóficos revisitado

En el presente artículo, introducimos el conjunto plitogénico (como generalización de conjuntos nítidos, borrosos, intuicionistas, borrosos y neutrosóficos), que es un conjunto cuyos elementos se caracterizan por los valores de muchos atributos. Un valor de atributo v tiene un grado correspondiente (difuso, intuicionista difuso o neutrosófico) de pertenencia d (x, v) del elemento x, al conjunto P, con respecto a algunos criterios dados.

Novedades Literarias



Últimas Búsquedas


Categorías Destacadas