Feria Del Libro Digital

Gran exposición gratuita de libros en formatos PDF, EPUB y MOBI

Topología diferencial

Resumen del Libro

Libro Topología diferencial

A finales del siglo XX, año 1998, dos de los autores de este texto publicamos uno basado en la experiencia de impartir diversos cursos de Topología Diferencial en el Departamento de Geometría y Topología de la Facultad de Ciencias Matemáticas de la Universidad Complutense de Madrid. Se recogían en él las ideas centrales de transversalidad y aproximación en variedades con borde: los métodos que introdujo Thom a mediados del siglo XX, y que permiten hacer, en frase acuñada por Milnor «topología desde el punto de vista diferenciable». Efectivamente, producen de manera extremadamente elegante resultados muy importantes. Muchos colegas usaron aquel texto en sus cursos e hicieron comentarios y sugerencias, y luego, ya descatalogado, aún preguntaban por él. Este halago nos empujó a escribir otro nuevo ya en este siglo, año 2014. Inevitablemente, nuestro punto de vista sobre cómo se desarrolla un curso de iniciación de Topología Diferencial había variado con los años. Así, aunque fieles a la idea original, produjimos un texto distinto en aspectos relevantes. Aquí fue esencial la contribución del autor que no estuvo en aquella aventura inicial. Hubo después en 2020 una reedición sustancialmente revisada, y ahora el lector tiene en sus manos ésta con más mejoras. Todas las revisiones son el fruto de explicar el texto en el aula, en el Master de Matemáticas Avanzadas de la UCM. Los cambios introducidos han derivado en buena parte del entusiasmo de nuestros alumnos por aprender y les agradecemos haber elegido nuestras clases. Muchas personas nos han ayudado en estas reediciones, y no podemos nombrarlas a todas, pero como representación queremos citar a Jaime J. Sánchez Gabites, cuyas observaciones han sido verdaderamente iluminadoras. En fin, de nuevo agradecemos a Sanz y Torres que continuadamente apoya nuestro deseo de perfeccionar el libro. Este texto está pensado para un cuatrimestre a razón de cinco horas semanales, contando con el trabajo individual de cada estudiante. El objetivo es explicar qué es la transversalidad y cómo se utiliza junto con la aproximación para abordar problemas topológicos. Las treinta y cuatro secciones de sus cuatro capítulos se enumeran en la página IX y sus títulos dan razón precisa de las etapas del recorrido que proponemos. La salida es la definición de variedad con borde y la meta son seis teoremas fundamentales: el del punto fijo de Brouwer, el de invarianza del dominio, el de separación de Jordan-Brouwer, el de homotopía de Brouwer-Hopf, el de la esfera de Brouwer y el de Borsuk-Ulam. Señalemos que: (1) Consideramos siempre variedades sumergidas en un espacio afín, pero incluimos una prueba elemental a partir de las definiciones de que las variedades diferenciables abstractas son todas sumergidas. (2) Construimos de manera explícita directa los entornos tubulares de una variedad diferenciable en un espacio afín y las retracciones propias diferenciables asociadas. (3) Detallamos la construcción de collares de una variedad con borde, sin utilizar flujos, y de las correspondientes retracciones propias continuas (diferenciables no pueden ser). (4) Demostramos los resultados completos de aproximación y homotopía diferenciables para aplicaciones con valores en variedades con borde. En las fuentes que conocemos estos resultados de aproximación y homotopía se formulan sólo para aplicaciones con valores en variedades sin borde. El argumento habitual apela a las retracciones diferenciables, y por ello no vale para variedades con borde. Aquí utilizamos collares para complementar ese argumento y poder establecer los resultados sin restricciones de borde. Todo esto es ciertamente parte del folklore de los especialistas, pero es bueno escribir ese folklore alguna vez. En otro orden de cosas, hacemos una simplificación grande de la presentación limitándonos a variedades de clase infinito, que denominamos simplemente variedades diferenciables. El tratamiento ...

Ficha Técnica del Libro

Subtitulo : Un curso de iniciación (3ª Edición)

Número de páginas 186

Autor:

  • Enrique Outerelo Domínguez
  • Juan Ángel Rojo
  • Jesús María Ruiz Sancho

Categoría:

Formatos Disponibles:

PDF, EPUB, MOBI

¿Cómo descargar el libro?

Valoración

Popular

3.6

92 Valoraciones Totales


Otros libros relacionados de Matemáticas

La olimpiada de los enigmas

Libro La olimpiada de los enigmas

101 enigmas que pondrán a prueba tus conocimientos matemáticos, capacidad de observación y rapidez mental. ¿A qué esperas? Por Profesor10demates, uno de los profesores de matemáticas más populares en Youtube. El castillo de la Encina, en la ciudad de las Tres Torres y los Dos Puentes, acoge a jóvenes sabuesos de todo el mundo en las Olimpiadas Mate-detectivescas, y los Newtonianos necesitarán tu ayuda para descubrir el secreto que oculta un antiguo artilugio llamado críptex. Para ello, tendrás que unirte a los detectives Carlota, Javi y Valeria y resolver todo tipo de retos y...

Geometría plana: un espacio de aprendizaje

Libro Geometría plana: un espacio de aprendizaje

Cristalizar la aproximación metodológica que puede utilizarse en un curso de geometría plana euclidiana es el propósito principal de este libro. Tal aproximación metodológica se describe a través del tipo de tareas que se proponen a los estudiantes, el recurso tecnológico que los apoya para realizarlas y el tipo de interacción entre profesor y estudiantes o entre estos últimos, que soporta la construcción de conocimiento en el aula. Específicamente, la cristalización se refleja en la presentación de los 46 problemas abiertos que se proponen, cuya resolución propicia una...

Pitágoras y su teorema

Libro Pitágoras y su teorema

Es posible que Pitágoras fuese el primer matemático y filósofo del mundo occidental. Su obra cambió la visión contemporánea del mundo, pues estableció conceptos tales como el razonamiento abstracto o la prueba deductiva. Pitágoras y su teorema resume brillantemente la vida y la obra de Pitágoras, ya que están presentadas dentro de su contexto histórico y científico, y, además, proporciona una explicación clara y accesible de significado y la importancia que tuvieron para el mundo en que vivimos hoy en día.

Construcción de conocimiento trigonométrico

Libro Construcción de conocimiento trigonométrico

Este libro sintetiza, de múltiples maneras, el esfuerzo de largos años de un grupo de investigación que ha entendido a la matemática educativa como disciplina científica con un fuerte compromiso social. Esta obra es fruto del talentoy de la entrega de su autora.═NDICE RESUMIDO: Problematizando el saber matemático escolar. Análisis del discurso trigonométrico escolar. El conocimiento trigonométrico en un escenario histórico. Una construcción social del conocimiento trigonométrico. Elementos para el rediseño del discurso trigonométrico escolar.Gisela Montes Espinosa es doctora...

Novedades Literarias



Últimas Búsquedas


Categorías Destacadas