Feria Del Libro Digital

Gran exposición gratuita de libros en formatos PDF, EPUB y MOBI

Topología diferencial

Resumen del Libro

Libro Topología diferencial

A finales del siglo XX, año 1998, dos de los autores de este texto publicamos uno basado en la experiencia de impartir diversos cursos de Topología Diferencial en el Departamento de Geometría y Topología de la Facultad de Ciencias Matemáticas de la Universidad Complutense de Madrid. Se recogían en él las ideas centrales de transversalidad y aproximación en variedades con borde: los métodos que introdujo Thom a mediados del siglo XX, y que permiten hacer, en frase acuñada por Milnor «topología desde el punto de vista diferenciable». Efectivamente, producen de manera extremadamente elegante resultados muy importantes. Muchos colegas usaron aquel texto en sus cursos e hicieron comentarios y sugerencias, y luego, ya descatalogado, aún preguntaban por él. Este halago nos empujó a escribir otro nuevo ya en este siglo, año 2014. Inevitablemente, nuestro punto de vista sobre cómo se desarrolla un curso de iniciación de Topología Diferencial había variado con los años. Así, aunque fieles a la idea original, produjimos un texto distinto en aspectos relevantes. Aquí fue esencial la contribución del autor que no estuvo en aquella aventura inicial. Hubo después en 2020 una reedición sustancialmente revisada, y ahora el lector tiene en sus manos ésta con más mejoras. Todas las revisiones son el fruto de explicar el texto en el aula, en el Master de Matemáticas Avanzadas de la UCM. Los cambios introducidos han derivado en buena parte del entusiasmo de nuestros alumnos por aprender y les agradecemos haber elegido nuestras clases. Muchas personas nos han ayudado en estas reediciones, y no podemos nombrarlas a todas, pero como representación queremos citar a Jaime J. Sánchez Gabites, cuyas observaciones han sido verdaderamente iluminadoras. En fin, de nuevo agradecemos a Sanz y Torres que continuadamente apoya nuestro deseo de perfeccionar el libro. Este texto está pensado para un cuatrimestre a razón de cinco horas semanales, contando con el trabajo individual de cada estudiante. El objetivo es explicar qué es la transversalidad y cómo se utiliza junto con la aproximación para abordar problemas topológicos. Las treinta y cuatro secciones de sus cuatro capítulos se enumeran en la página IX y sus títulos dan razón precisa de las etapas del recorrido que proponemos. La salida es la definición de variedad con borde y la meta son seis teoremas fundamentales: el del punto fijo de Brouwer, el de invarianza del dominio, el de separación de Jordan-Brouwer, el de homotopía de Brouwer-Hopf, el de la esfera de Brouwer y el de Borsuk-Ulam. Señalemos que: (1) Consideramos siempre variedades sumergidas en un espacio afín, pero incluimos una prueba elemental a partir de las definiciones de que las variedades diferenciables abstractas son todas sumergidas. (2) Construimos de manera explícita directa los entornos tubulares de una variedad diferenciable en un espacio afín y las retracciones propias diferenciables asociadas. (3) Detallamos la construcción de collares de una variedad con borde, sin utilizar flujos, y de las correspondientes retracciones propias continuas (diferenciables no pueden ser). (4) Demostramos los resultados completos de aproximación y homotopía diferenciables para aplicaciones con valores en variedades con borde. En las fuentes que conocemos estos resultados de aproximación y homotopía se formulan sólo para aplicaciones con valores en variedades sin borde. El argumento habitual apela a las retracciones diferenciables, y por ello no vale para variedades con borde. Aquí utilizamos collares para complementar ese argumento y poder establecer los resultados sin restricciones de borde. Todo esto es ciertamente parte del folklore de los especialistas, pero es bueno escribir ese folklore alguna vez. En otro orden de cosas, hacemos una simplificación grande de la presentación limitándonos a variedades de clase infinito, que denominamos simplemente variedades diferenciables. El tratamiento ...

Ficha Técnica del Libro

Subtitulo : Un curso de iniciación (3ª Edición)

Número de páginas 186

Autor:

  • Enrique Outerelo Domínguez
  • Juan Ángel Rojo
  • Jesús María Ruiz Sancho

Categoría:

Formatos Disponibles:

PDF, EPUB, MOBI

¿Cómo descargar el libro?

Valoración

Popular

3.6

92 Valoraciones Totales


Otros libros relacionados de Matemáticas

Estadística y probabilidad

Libro Estadística y probabilidad

La obra contiene un curso básico de estadística y de probabilidad. Se presentan temas de estadística descriptiva y se brindan las bases del concepto de probabilidad como elemento fundamental para describir fenómenos naturales y sociales. Asimismo, se estudia la incertidumbre. Se propone que el estudiante analice datos reales para la solución de problemas y el desarrollo de proyectos de investigación.

El lenguaje en el aprendizaje de las matemáticas

Libro El lenguaje en el aprendizaje de las matemáticas

La evaluación formativa -Evaluación para el Aprendizaje- es una poderosa forma de elevar el nivel y mejorar los aprendizajes. Sin embargo, tal como muestra este libro, un seguimiento minucioso de los progresos y dificultades en las aulas depende de la capacidad y disposición del alumnado para utilizar el lenguaje matemático al expresar sus ideas Una de las maneras de llevar a cabo esta evaluación formativa de los aprendizajes es recurriendo a una metodología didáctica basada en el diálogo, los debates, la expresión de dudas y las explicaciones; de este modo, el trabajo se transforma...

Introducción a las matemáticas para las ciencias sociales

Libro Introducción a las matemáticas para las ciencias sociales

En esta publicación se presentan los temas matemáticos que se consideran básicos para que un/a científico/a social pueda adentrarse en la creciente cantidad de técnicas cuantitativas que se están desarrollando en disciplinas tan diversas como la Sociología, la Ciencia Política, la Psicología y la Economía. Los criterios con los que se han redactado las páginas siguientes son la exposición de los conocimientos matemáticos esenciales para la comprensión de la estadística social, la explicación sucinta de las herramientas más necesarias para el estudio de los fenómenos sociales ...

Matemáticas discretas

Libro Matemáticas discretas

Un conjunto es discreto si sus elementos están separados. Los conjuntos finitos y los subconjuntos infinitos de números enteros son conjuntos discretos, pero el conjunto de los números reales no lo es. La matemática discreta es el estudio de estructuras matemáticas definidas sobre conjuntos discretos. Aunque los orígenes de la matemática discreta se remontan a la antigüedad, no ha sido sino hasta años recientes que ha cobrado importancia, por sus aplicaciones a diversos campos, en particular a las ciencias de la computación y a la investigación de operaciones. Este libro de texto...

Novedades Literarias



Últimas Búsquedas


Categorías Destacadas